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Urocortin induced expression of COX-2 and ICAM-1
via corticotrophin-releasing factor type 2 receptor
in rat aortic endothelial cellsbph_346 819..829
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Background and purpose: Our previous study showed that urocortin (Ucn1) exacerbates the hypercoagulable state and
vasculitis in a rat model of sodium laurate-induced thromboangiitis obliterans. Furthermore, the inflammatory molecules
COX-2 and ICAM-1 may participate in this effect. In the present study, the effects of Ucn1 on COX-2 and ICAM-1 expression
in lipopolysaccharide (LPS)-induced rat aortic endothelial cells (RAECs) were investigated and the mechanisms involved
explored.
Experimental approach: RAECs were isolated from adult male Wistar rats, and identified at the first passage. Experiments were
performed on cells, from primary culture, at passages 5–8. The expression of COX-2 and ICAM-1 at both mRNA and protein
levels was determined by semi-quantitative RT-PCR and Western blot analysis. Levels of PGE2 and soluble ICAM-1 (sICAM-1) in
culture medium were measured by enzyme-linked immunosorbent assay. Furthermore, the phosphorylation status of
p38MAPK, ERK1/2, JNK, Akt and NF-kB was analysed by Western blot; nuclear translocation of NF-kB was observed by
immunofluorescence.
Key results: Ucn1 augmented LPS-induced expression of COX-2 and ICAM-1 in RAECs in a time- and concentration-
dependent manner. Ucn1 increased PGE2 and sICAM-1 levels. These effects were abolished by the CRF2 receptor antagonist,
antisauvagine-30, but not by the CRF1 receptor antagonist, NBI-27914. Moreover, Ucn2 activated p38MAPK and augmented
NF-kB nuclear translocation and phosphorylation, whereas ERK1/2, JNK and Akt pathways were not involved in this
process.
Conclusions and implications: These findings suggest that Ucn1 exerts pro-inflammatory effects by
augmenting LPS-induced expression of COX-2 and ICAM-1 in RAECs via CRF2 receptors and the activation of p38MAPK
and NF-kB.
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August 2009

Keywords: urocortin; COX-2; ICAM-1; CRF2 receptor; rat aortic endothelial cells

Abbreviations: CRF, corticotrophin-releasing factor; CRF1 receptor, corticotrophin-releasing factor type 1 receptor; CRF2

receptor, corticotrophin-releasing factor type 2 receptor; ECs, endothelial cells; RAECs, rat aortic endothelial
cells; TAO, thromboangiitis obliterans; Ucn, urocortin

Introduction

Vascular endothelial cells (ECs) play a pivotal role in modu-
lating local and systemic inflammation. ECs express chemok-
ines that initiate the activation and recruitment of circulating
leukocytes at sites of tissue inflammation (Berman et al., 1993;
Bannerman and Goldblum, 1997). Among these chemokines,

COX-2 and ICAM-1 are two important modulators, with the
former participating in a series of inflammatory diseases and
the latter playing an important role in the adhesion process of
inflammatory cells. The bacterial endotoxin, lipopolysaccha-
ride (LPS), an essential component of the surface of Gram-
negative bacteria (Raetz, 1990), has potent pro-inflammatory
properties by acting on many cell types including ECs
(Berman et al., 1993; Munshi et al., 2002). LPS-activated ECs
may be changed with up-regulation of COX-2 and ICAM-1
expression (Chen et al., 2001b; Heo et al., 2008), pro-
coagulant activity, enhanced endothelial permeability and
abundant pro-inflammatory mediators’ secretion (Berman
et al., 1993; Bannerman and Goldblum, 1997; Bierhaus et al.

Correspondence: Shengnan Li, Department of Pharmacology, Nanjing Medical
University, 140 Hanzhong Road, Nanjing 210029, China. E-mail: snli@
njmu.edu.cn
*These authors contributed equally to this work.
Received 13 April 2009; accepted 21 April 2009

British Journal of Pharmacology (2009), 158, 819–829
© 2009 Nanjing Medical University
Journal compilation © 2009 The British Pharmacological Society All rights reserved 0007-1188/09
www.brjpharmacol.org



2000), which may lead to an imbalance in the immune
system. Thus, finding a way to minimize COX-2 and ICAM-1
expression may have a dramatic impact on the treatment of
inflammatory diseases.

Urocortin (Ucn), a 40 aa corticotrophin-releasing factor
(CRF) family peptide that was first identified in rat midbrain
(Vaughan et al., 1995), has been demonstrated to be widely
expressed in peripheral tissues including the cardiovascular
system, spleen, skin, lymphocytes, macrophages and mast
cells (Fekete and Zorrilla, 2007). The effects of Ucn1 are
mediated by two high-affinity receptors, the CRF1 receptor
and the CRF2 receptor, with the former mainly distributed
centrally and the latter primarily expressed peripherally
(Fekete and Zorrilla, 2007). Besides its cardiovascular protec-
tive property (Okosi et al., 1998; Oki and Sasano, 2004; Yang
et al., 2006), Ucn1 is now considered to be a potent
immunomodulator which participates in various immune
responses (Fekete and Zorrilla, 2007). Our previous studies
have demonstrated that Ucn1 participates in the develop-
ment of allergic asthma in the rat and can trigger mast cell
infiltration and activation via CRF receptors (Wu et al., 2006;
2008). Singh et al. (1999) found that Ucn1 is potent at
inducing mast cell degranulation and triggering vascular
permeability via CRF receptors. Moreover, our data showed
that CRF plays a significant role in promoting the develop-
ment of atherosclerosis (Wu et al., 2009). All of these find-
ings suggest that immune-derived Ucn1 may participate in
the pathophysiology of many inflammatory conditions as a
pro-inflammatory mediator.

Previous studies have indicated that endogenous Ucn1 has
an inhibitory role in the growth of ECs and blood vessels
(Yang et al., 2008), and it may trigger ECs to change into a
procoagulant state (Grignani and Maiolo, 2000) by stimulat-
ing interleukin-1b (IL-1b) and interleukin-6 (IL-6) secretion
in vitro (Kohno et al., 2001). Recently, it was found that acti-
vation of CRF2 receptors suppresses vascularization (Bale et al.,
2002; Hao et al., 2008). Thus, Ucn1 may have a dramatic
impact on the normal function of ECs.

Kageyama et al. (2006) demonstrated that in rat aortic
smooth muscle cells, Ucn1 induces the expression of COX-2
in a time- and concentration-dependent manner (Kageyama
et al., 2006). Also, CRF has been shown to enhance the
interferon-g-stimulated expression of ICAM-1 on human skin
keratinocytes (Quevedo et al., 2001). Our recent data demon-
strated that Ucn1 promotes the development of vasculitis in
the rat thromboangiitis obliterans (TAO) model (original
article accepted by British Journal of Pharmacology). Because
COX-2 and ICAM-1 are associated with the development of
vasculitis (de Gaetano et al., 2003; Witkowska, 2005), our data
also suggest that this effect of Ucn1 on vasculitis might be
exerted through an effect on the expression of these two
factors. The present study was performed to examine the
effects of Ucn1 on COX-2 and ICAM-1 expression in LPS-
induced rat aortic endothelial cells (RAECs) and explore the
mechanisms involved. In the present study, it was first dem-
onstrated that Ucn increased the expression of both COX-2
and ICAM-1 in a time- and concentration-dependent manner
in LPS-activated RAECs. Furthermore, the p38MAPK and
NF-kB pathways were involved in this effect, which was
exerted via the CRF2 receptor.

Methods

Culture of RAECs
RAECs were isolated from male Wistar rats (Shanghai Labora-
tory Animal Center, Shanghai, China) according to the
method described previously (McGuire and Orkin, 1987; Yang
et al., 2006). The animal operation procedure was approved
by the ethics review board of Nanjing Medical University.
Cells were cultured in RPMI 1640 supplemented with 20%
fetal bovine serum, 1% penicillin–streptomycin, at 37°C in a
95% air/5% CO2 incubator. Our previous studies were carried
out with passages 5–8 RAECs, and it was found, using an
F-VIII marker, that these cells maintain their properties (Yang
et al., 2006). Thus, the present experiments were performed
on cells, from primary culture, at passages 5–8. The identity of
the RAECs was confirmed by immunofluorescence staining by
the use of rabbit anti-rat factor VIII antibody and Cy-3
conjugated goat anti-rabbit IgG.

Immunofluorescence staining
RAECs were cultured on coverslips placed in tissue culture
dishes. Following different treatments, the cells were washed
with phosphate-buffered solution and fixed with fresh 4%
paraformaldehyde for 30 min. Subsequently, the cells were
permeabilized with 0.5% Triton X-100 for 15 min on ice and
blocked in 5% BSA for 30 min at room temperature. After
being blocked, the cells were incubated with factor VIII anti-
body (1:100) or NF-kB p65 antibody (1:25) overnight in a
humid chamber at 4°C. Then, the cells were incubated with a
secondary antibody conjugated to Cy-3 for 30 min in the
dark. After being washed three times, the cells were mounted
on a slide. The slides were visualized using a fluorescence
microscope.

RNA isolation and semi-quantitative RT-PCR analysis
Total RNAs were extracted from RAECs, using TRIzol accord-
ing to the manufacturer’s protocol. For cDNA synthesis,
Moloney murine leukaemia virus (MMLV) was applied as the
reverse transcriptase. For PCR reaction, Taq DNA polymerase
was used in the reaction system. Primers for COX-2 (Ohnaka
et al., 2000), ICAM-1 (Taal et al., 2000) and GAPDH (Baigent
and Lowry, 2000) were synthesized from published sequences
as shown in Table 1. The products were visualized by electro-
phoresis in 2.0% agarose gel containing 0.5 mg·mL-1 ethidium
bromide. Specific genes were verified by their predicted sizes.
GAPDH was set as the internal control.

Western blot analysis
The protein samples were separated on a 10% sodium dodecyl
sulphate–polyacrylamide gel and electrophoretically trans-
ferred to PVDF membranes in Tris–glycine transfer buffer.
Then, membranes were blocked in 5% (w/v) instant non-fat
dried milk for 2 h at room temperature, and incubated
with primary antibodies corresponding to COX-2 (1:1000),
ICAM-1 (1:500), b-actin (1:250), p38MAPK (1:1000),
phospho-p38MAPK (1:1000), ERK1/2 (1:1000), phospho-
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ERK1/2 (1:1000), JNK (1:1000), phospho-JNK (1:1000), Akt
(1:1000), phospho-Akt (Ser 473) (1:1000), NF-kB p65 (1:1000),
phospho-NF- kB p65 (1:1000), respectively, at 4°C overnight.
The membranes were subsequently washed with TBST
[50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 0.05% Tween 20]
and incubated with secondary horseradish peroxidase-
conjugated IgG for 2 h at room temperature. Immunoreactive
proteins were visualized by LumiGLO (Cell Signaling Tech-
nology, Beverly, MA, USA) chemiluminescent reagent and
peroxide. The light-emitting bands were detected with X-ray
films.

Enzyme-linked immunosorbent assay (ELISA)
Levels of PGE2 and soluble ICAM-1 (sICAM-1) in culture
medium were determined by ELISA assay using PGE2 and
sICAM-1 kits according to the manufacturers’ instructions. Kit
standards and controls were performed for each assay com-
pleted. The final concentrations of PGE2 and sICAM-1 were
calculated by converting the optical density reading using
standard curves.

Statistical analysis
Data are expressed as means � SEM. The significance for the
difference among groups was analysed with SPSS 11.0
(Chicago, IL, USA) by one-way analysis of variance with
Student–Newman–Keuls multiple comparison methods.
Differences were considered to be statistically significant at
a P value of <0.05.

Reagents
Rat urocortin1 (Ucn1), Ucn2, CRF1 receptor antagonist NBI-
27914, CRF2 receptor antagonist antisauvagine-30, LPS, rabbit
anti-rat factor VIII (a stable endothelial antigen) antibody and
Cy-3 conjugated goat anti-rabbit IgG were purchased from
Sigma (St. Louis, MO, USA). Polyclonal COX-2 antibody and
monoclonal ICAM-1 antibody were obtained from Abcam
(Cambridge, UK). PGE2 and sICAM-1 ELISA kits were
obtained from R&D (Minneapolis, MN, USA) and Boster
(Wuhan, China) respectively. Specific antibodies to
p38MAPK, phospho-p38MAPK, ERK1/2, phospho-ERK1/2,
JNK, phospho-JNK, Akt, phospho-Akt (Ser 473), NF-kB p65,
phospho-NF-kB p65, p38MAPK inhibitor SB203580,
LumiGLO chemiluminescent reagent and peroxide were
provided by Cell Signaling Technology. TRIzol and MMLV

were obtained from Invitrogen (Carlsbad, CA, USA), Taq DNA
polymerase from Promega (Madison, WI, USA) and the X-ray
films from Kodak (Rochester, NY, USA). The other reagents
used were derived from commercial sources. All drug/
molecular target nomenclature conforms to British Journal of
Pharmacology’s Guide to Receptors and Channels (Alexander
et al., 2008).

Results

Immunofluorescent identification of RAECs
After being isolated, RAECs were identified at the first passage.
As shown in Figure 1, the cytoplasm was completely stained
red with factor VIII-specific antibody and Cy-3 conjugated
secondary antibody. Factor VIII-associated antigen is a cyto-
logical marker closely identified with ECs (Karasek, 1989); the
cells we obtained were undoubtedly RAECs.

Ucn augmented LPS-induced COX-2 and ICAM-1 expression
in RAECs
As depicted in Figure 2, after exposure of RAECs to 10 mg·mL-1

LPS, 10-7 M Ucn (Ucn1) induced COX-2 and ICAM-1 expres-
sion in a time-dependent manner, with the mRNA and
protein levels reaching their peaks after 4 and 8 h respectively.
With increased time, their expression was decreased. Hence,
in the following experiments, the time points of 4 and 8 h
were selected to determine the mRNA and protein levels
respectively. Ucn1 augmented LPS-induced COX-2 and
ICAM-1 expression in a concentration-dependent manner; a
marked effect was observed with 10-9 M Ucn1, which did not
increase at higher concentrations (Figure 3).

COX-2 and ICAM-1 expression was mediated by the
CRF2 receptor
To illustrate the involvement of CRF receptors in Ucn1-
induced augmentation of COX-2 and ICAM-1 expression in
LPS-activated RAECs, cells were pretreated with Ucn1 alone or
together with CRF receptor antagonists (CRF1 receptor antago-
nist, NBI-27914, or CRF2 receptor antagonist, antisauvagine-
30). Ucn1 pretreatment augmented LPS-induced COX-2
and ICAM-1 mRNA expression to levels 1.36- and 1.40-fold
observed after LPS pretreatment alone, respectively;
antisauvagine-30 reversed this augmentation (Figure 4IA,B). A
similar result was observed on COX-2 and ICAM-1 protein

Table 1 A summary of the RT-PCR primer sequences used to amplify GAPDH, COX-2 and ICAM-1

Sequences Product size (bp) Annealing T (C)

GAPDH Sense TCCCAGAGCTGAACGGGAAGCTCACTG 339 68.1
Antisense TGGAGGCCATGTAGGCCATGAGGTCCA

COX-2 Sense TTCACCAGACAGATTGCTGGC 530 63.5
Antisense AGTCTGGAGTGGGAGGCACTTG

ICAM-1 Sense AGAAGGACTGCTTGGGGAA 332 58.1
Antisense CCTCTGGCGGTAATAGGTG
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expression (Figure 4IC,D). However, NBI-27914 had no sig-
nificant effect on COX-2 and ICAM-1 expression.

The concentrations of PGE2, the main metabolite of COX-2,
and sICAM-1 in the supernatant of the culture were measured
by ELISA. Similar results were observed for both PGE2 and
sICAM-1 in that levels were increased by the application of
Ucn1, and pretreatment with antisauvagine-30 abolished this
increase (Figure 4IIA,B).

Interestingly, it was found that the two molecules, COX-2
and ICAM-1, changed in a similar manner. To explore their
possible relationship, NS-398, a selective inhibitor of COX-2,
was used. As shown in Figure 4IIA, in the presence of both
Ucn1 and LPS, PGE2 production was significantly decreased
after NS-398 pretreatment. Furthermore, Ucn1-induced
elevation of ICAM-1 was dramatically reduced on blockade
of COX-2 in LPS-activated RAECs (Figure 4IIB). These

observations indicate that Ucn1-induced ICAM-1 expression
was partially mediated by COX-2.

Ucn2-induced p38MAPK and NF-kB phosphorylation in
LPS-activated RAECs
Mitogen-activated protein kinases (MAPKs) and Akt pathways
have been implicated in the activation of the pro-
inflammatory process (Bhat et al., 1998; Ojaniemi et al.,
2003), and have been shown to be key signalling intermedi-
ates downstream of CRF2 receptor activation (Dermitzaki
et al., 2002; Sananbenesi et al., 2003; Karteris et al., 2004;
Moss et al., 2007; Markovic et al., 2008). To investigate the
role of these two pathways in the effect of CRF2 receptor on
LPS-induced COX-2 and ICAM-1 expression, the cells were
pretreated with Ucn2, a selective CRF2 receptor agonist
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Figure 1 Immunofluorescent identification of rat aortic endothelial cells. Cells cultured on coverslips were incubated with rabbit anti-rat factor
VIII (a stable endothelial antigen) antibody and then incubated with Cy-3 conjugated secondary antibody; the nuclei were stained with DAPI.
In the negative control, factor VIII antibody was omitted (magnification: 200¥).
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Figure 2 COX-2 and ICAM-1 expression induced by Ucn1 occurred
in a time-dependent manner in lipopolysaccharide (LPS)-activated rat
aortic endothelial cells. In the presence of LPS (10 mg·mL-1), cells
were pretreated with Ucn1 (10-7 M) and incubated for the durations
shown. (A) COX-2 and ICAM-1 mRNA expression induced by Ucn1
reached their peak at the time point of 4 h. (B) Ucn1 promoted
COX-2 and ICAM-1 protein expression with significant effects at the
time point of 8 h. Similar results were obtained from more than three
independent cultures, and a representative experiment is shown.
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Figure 3 COX-2 and ICAM-1 expression induced by Ucn1 was in
a concentration-dependent manner in lipopolysaccharide (LPS)-
activated rat aortic endothelial cells. On exposure to LPS
(10 mg·mL-1), cells were pretreated with Ucn1 at concentrations
ranging from 10-12 to 10-7 M for 30 min. (A) Cells were incubated for
4 h, and COX-2 and ICAM-1 mRNA expression was determined by
RT-PCR. (B) Cells were incubated for 8 h, and COX-2 and ICAM-1
protein level was measured by Western blot. Experiments were done
from more than three independent cultures, and a representative
experiment is shown.
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(Fekete and Zorrilla, 2007). Subsequently, the phosphoryla-
tion status of p38MAPK, ERK1/2, JNK and Akt were analysed
by Western blot.

As depicted in Figure 5A, in the presence of 10 mg·mL-1 LPS,
10-9 M Ucn2 induced a transient phosphorylation of
p38MAPK with peak activation at 15 min. Furthermore, LPS-
induced significant phosphorylation of p38MAPK and Ucn2
application dramatically augmented this phosphorylation
(Figure 5B,C). This phosphorylation of p38MAPK was com-
pletely blocked in the presence of 10-5 M SB203580, a
p38MAPK inhibitor. However, the phosphorylation of
ERK1/2, JNK and Akt did not appear to be altered by Ucn2
treatment (Figure 5D–F).

NF-kB is known to participate in the inflammatory process
(Ghosh and Hayden, 2008). To determine whether it is
involved in Ucn2-induced inflammation, nuclear transloca-
tion of NF-kB was observed by immunofluorescence. As
shown in Figure 6A, NF-kB was visualized primarily in the
cytoplasm in untreated control cells, while LPS treatment for
1 h induced NF-kB translocation from the cytoplasm into the
nucleus. What is more important, compared with LPS treat-
ment, Ucn2 noticeably augmented NF-kB nuclear transloca-
tion as after Ucn2 treatment, most NF-kB was visualized in the
nucleus of the cells. Furthermore, the phosphorylation status
of NF-kB was determined by Western blot analysis. As shown
in Figure 6B,C, LPS pretreatment significantly increased

NF-kB phosphorylation; Ucn2 application further enhanced
the phosphorylation of NF-kB. Combined with the observa-
tion in Figure 6A, we came to the conclusion that Ucn2 can
increase LPS-induced phosphorylation of NF-kB in RAECs.

Discussion and conclusions

Ucn (Ucn1), a CRF family peptide (Vaughan et al., 1995), has
been demonstrated to stimulate the release of pro-
inflammatory mediators under inflammatory conditions
(Kohno et al., 2001; Saruta et al., 2004). In this study, we
found that Ucn1 could increase LPS-induced COX-2 and
ICAM-1expression in RAECs via the CRF2 receptor. Further-
more, p38MAPK and NF-kB pathways participated in this
process.

It has been well established that, in addition to the indirect
anti-inflammatory effect via ACTH/cortisol (Elenkov and
Chrousos, 1999; Elenkov et al., 1999), the CRF family peptides
play a direct pro-inflammatory role in the regulation of the
inflammatory process (Elenkov and Chrousos, 1999; Elenkov
et al., 1999). Moreover, the pro-inflammatory effect of CRF
family peptides is partially attributed to their stimulation of
immune cells, such as mast cells and macrophages (Theo-
harides et al., 1995; 1998; Agelaki et al., 2002; Tsatsanis et al.,
2007). It has been demonstrated that these immune cells
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Figure 4 Effect of Ucn1 on COX-2 and ICAM-1 expression in rat aortic endothelial cells. Cells were treated with vehicle, Ucn1 (10-9 M) alone
or together with NBI-27914 (10-8 M) or antisauvegine-30 (10-8 M), or NS-398 (10-5 M) in the presence of lipopolysaccharide (LPS)
(10 mg·mL-1) as indicated. (I) Effect of Ucn1 on COX-2 and ICAM-1 expression. Cells were incubated for 4 h (mRNA) or 8 h (protein) to
determine COX-2 and ICAM-1 levels by RT-PCR (IA and B) or Western blot (IC and D). (II) Effect of Ucn1 on PGE2 and soluble ICAM-1 (sICAM-1)
production measured by enzyme-linked immunosorbent assay. Cells were incubated for 24 h, and the culture supernatant was obtained to
determine PGE2 (IIA) or sICAM-1 (IIB) levels. Data given are the means � SEM of values taken from three independent cultures. *P < 0.05, versus
LPS group; #P < 0.05, versus Ucn1 + LPS group. Similar results were obtained from more than three independent cultures, and a representative
experiment is shown.
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express CRF1 and CRF2 receptors, and can synthesize CRF
family peptides (Theoharides et al., 1998; Baigent, 2001). CRF
and Ucn1 stimulate the production and release of pro-
inflammatory mediators in mast cells (Theoharides et al.,
1995; 1998), such as IL-1, IL-6 and TNF-a. Moreover, CRF
intensifies the response of macrophages to bacterial LPS by
augmenting their synthesis of the pro-inflammatory cytok-
ines, TNF-a and IL-6, at the mRNA level (Agelaki et al., 2002).

Vascular ECs play a pivotal role in modulating local and
systemic inflammation. LPS has potent pro-inflammatory
properties and acts on many cell types including ECs (Berman
et al., 1993; Munshi et al., 2002). There is much evidence
indicating that COX-2, the rate-limiting enzyme in the
metabolism of arachidonic acid, is involved in inflammatory
diseases (Dubois et al., 1998; Cipollone and Fazia, 2006);
ICAM-1, as an important cellular adhesion molecule, has also
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been shown to have a key role in modulating peripheral
inflammatory disease, such as artherosclerosis and TAO
(Halacheva et al., 2002; Witkowska, 2005). Several studies
have illustrated that LPS-activated ECs demonstrate an
up-regulation of COX-2 and ICAM-1 expression (Chen et al.,
2001b; Heo et al., 2008). However, the function of Ucn in
RAECs and its potential role in modulating COX-2 and
ICAM-1 expression have rarely been illustrated.

In the present study, we found that Ucn1 exerted a pro-
inflammatory effect by augmenting LPS-induced COX-2 and
ICAM-1 expression in RAECs in a time- and concentration-
dependent manner via the CRF2 receptor. Indeed, Ucn1
up-regulated the COX-2 and ICAM-1 mRNA expression to

reach a maximum at 4 h, and the protein levels peaked at 8 h.
This effect was via CRF2 receptors as it could be abolished by
the CRF2 receptor antagonist, antisauvagine-30, but not by the
CRF1 receptor antagonist, NBI-27914. The above effects were
further confirmed by measuring the levels of PGE2 (the main
metabolite of COX-2) and sICAM-1 in the culture supernatant
of LPS-activated RAECs. The present data are consistent with
those from previous studies. For example, it has been demon-
strated that CRF-related peptides induce COX-2 expression
and PG production in human placental trophoblasts and mac-
rophages (Tsatsanis et al., 2007; Gao et al., 2008). Kageyama
et al. (2006) showed that Ucn1 and -2 induced the expression
of COX-2 in a time- and dose-dependent manner via CRF2
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were treated with Ucn2 (10-9 M) and incubated for the durations shown. Phospho-p38MAPK was obviously observed at the time point of
15 min. The p38MAPK inhibitor SB203580 (10-5 M) was used to investigate the effect of p38MAPK phosphorylation (B and C). (D and E) For
ERK1/2 and JNK measurement, cells were incubated for 15 min, and phospho-ERK1/2, JNK were analysed by Western blot. (F) Effect of Ucn2
on Akt phosphorylation. Results given are the means � SEM of values taken from three independent cultures. *P < 0.05, versus LPS group.
Similar results were obtained from more than three independent cultures, and a representative experiment is shown.
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Figure 6 Effect of Ucn2 on the NF-kB pathway in lipopolysaccharide (LPS)-activated rat aortic endothelial cells. (A) Effect of Ucn2 on nuclear
translocation of NF-kB. Cells cultured on coverslips were incubated with specific NF-kB p65 antibody and then incubated with Cy-3 conjugated
secondary antibody; the nucleus was stained with DAPI. A negative control was obtained by omitting NF-kB p65 antibody. (Magnification:
200¥). (B and C) Effect of Ucn2 on NF-kB phosphorylation determined by Western blot. Results are presented as the means � SEM of values
taken from three independent cultures. *P < 0.05, versus LPS group. Similar results were obtained from more than three independent cultures,
and a representative experiment is shown.
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receptors in rat aortic smooth muscle cells. Previously, it was
found that CRF could enhance the interferon-g-stimulated
expression of ICAM-1 on human skin keratinocytes (Quevedo
et al., 2001). Taken together, our results demonstrate, for the
first time, that Ucn can induce COX-2 and ICAM-1 expression
in RAECs via the CRF2 receptor.

Our previous study showed that the application of Ucn1
induced COX-2 and ICAM-1 expression via the CRF1 receptor
in the rat TAO model. This discrepancy with the present
results might be attributed to the different distribution of CRF
receptor types. In RAECs, the dominant receptor type is the
CRF2 receptor (Fekete and Zorrilla, 2007). Therefore, the
effects of Ucn1 on RAECs are mainly implemented via
the CRF2 receptor. Kageyama et al. (2006) showed that Ucn1
and-2 could induce the expression of COX-2 via the CRF2

receptor in rat aortic smooth muscle cells. However, in the rat
TAO model, the level of CRF1 receptors was elevated, while
the expression of CRF2 receptors was not significantly
changed. This might be attributed to both the infiltration of
immune cells bearing CRF1 receptors and an effect of inflam-
matory mediators on CRF1 receptor expression. On the one
hand, the pro-inflammatory action of CRF peptides is par-
tially the result of their effects on immune cells (such as mast
cells, macrophages and lymphocytes) (Bamberger et al., 1998;
Theoharides et al., 1998; Agelaki et al., 2002), which can syn-
thesize CRF peptides and express their receptors (Theoharides
et al., 1998; Baigent, 2001). On the other hand, inflammatory
mediators could induce CRF1 receptor expression (Inada et al.,
2009).

The MAPKs pathway is known to play a critical role in
cytokine production (Bhat et al., 1998; Means et al., 2000),
and Akt is involved in LPS–TLR4-mediated cytokine expres-
sion in macrophages and microglia (Jones et al., 2001; Ojani-
emi et al., 2003; Kim et al. 2004). Recent studies have shown
MAPKs, Akt and NF-kB pathways are key downstream signal-
ling intermediates of CRF2 receptor activation (Dermitzaki
et al., 2002; Sananbenesi et al., 2003; Karteris et al., 2004;
Moss et al., 2007; Markovic et al., 2008). In order to further
clarify the mechanisms of the effect of Ucn on the expression
of COX-2 and ICAM-1 in LPS-induced RAECs activation, the
intracellular cell signalling pathways involved were investi-
gated. Because the modulating effect was via the CRF2 recep-
tor, Ucn2, which binds with high affinity to the CRF2 receptor
(Fekete and Zorrilla, 2007), was used. We found that Ucn2
activated the p38MAPK pathway, and SB203580, the highly
specific inhibitor of p38MAPK, abolished this effect. In con-
trast to previous studies showing that the ERK1/2 and Akt
pathways positively regulate CRF peptide-induced expression
of pro-inflammatory genes (Kim et al., 2004; Moss et al.,
2007), our present study did not provide significant evidence
that ERK1/2, JNK and Akt pathways are involved in the effects
of Ucn2 on LPS-induced activation of RAECs. These differ-
ences may be attributed to the use of different cell types. In
addition to the activation of the p38MAPK pathway, Ucn2
induced nuclear translocation and phosphorylation of NF-kB,
which is consistent with previous findings (Moss et al., 2007).
Taken together, by showing the positive effect of Ucn2 on
LPS-induced p38MAPK and NF-kB activation in RAECs, the
present study revealed part of the mechanism of the CRF2

receptor in inflammation.

Interestingly, in the present study, we found that the
change in the levels of COX-2 and ICAM-1 showed a similar
trend. To explore their possible relationship, NS-398, the
selective COX-2 inhibitor, was used. It was found that NS-398
reduced the expression of sICAM-1 (Figure 4IA,B). This indi-
cates that ICAM-1 expression is partially mediated by COX-2.
Previous studies have shown that COX-2 and ICAM-1 are
expressed in a wide variety of cell types, such as HUVECs and
mouse brain ECs (Seok et al., 2006; Zhao et al., 2008). Aspirin,
the non-selective COX-2 inhibitor, significantly suppressed
COX-2 and ICAM-1 expression induced by ox-LDL (Zhao
et al., 2008). This is consistent with our present findings.
Furthermore, COX-2 and ICAM-1 are now thought to be
regulated by NF-kB, via the expression of inflammatory genes
induced by the activation of NF-kB (Chen, 2006). In human
alveolar epithelial cells, TNF-a-induced ICAM-1 expression
was mediated through activation of IKKb, phosphorylation of
IkBa at serine and the subsequent activation of NF-kB
(Rahman et al., 1999; Huang et al., 2003a), and COX-2 expres-
sion is elevated after activation of IKKa/b and NF-kB (Chen
et al., 2000; Huang et al., 2003b). Degradation of IkB or block-
ade of IkB phosphorylation has been shown to suppress TNF-
a-induced expression of COX-2 and ICAM-1 (Chen et al.,
1995; 2001a). These findings combined with the present
results suggest that an intrinsic relationship exists between
the two molecules in that ICAM-1 expression is partially
mediated by COX-2, and NF-kB is involved in this process.

In conclusion, this is the first time that Ucn has been shown
to increase LPS-induced COX-2 and ICAM-1 expression, in
RAECs, in a time- and concentration-dependent manner. Fur-
thermore, this effect is mediated via the CRF2 receptor via
a mechanism involving both the p38MAPK and NF-kB
pathways.
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